Acute Lymphocytic Leukemia with 9p Anomalies

A Report of Four Additional Cases and Review of the Literature

J. L. Laï, P. Fenaux, J. P. Pollet, M. H. Estienne, J. B. Savary, J. J. Huart, and M. Deminatti

ABSTRACT: Childhood acute lymphocytic leukemia (ALL) with partial deletion of the short arm of chromosome 9 (9p−), particularly in the p21–22 region, associated with bulky disease, has been regarded as a possible subgroup of ALL. We have reviewed clinical and cytologic data in 128 cases of ALL (childhood and adult). Four of them had 9p anomalies. Two patients had a deletion in the 9p21 region associated with another deletion (9p13→pter) in one case and with t(1;19)(q21;p13) in the second patient. A third patient had a t(9;14)(p21;q12) balanced translocation associated with 14q22→qter deletion; the last patient showed a t(5;9)(p14;q21) unbalanced translocation also associated with 14q deletion. All four patients had lymphomatous ALL, but immunophenotype was non-T, in the four cases, (non-T, non-B in two patients and common ALL in the two remaining cases). Acute lymphocytic leukemia with 9p anomalies appears relatively frequently and is usually associated with poor prognostic features (i.e., bulk disease and high leukocyte counts) but does not seem restricted to childhood and T-cell lineage.

INTRODUCTION

1

In 1983, Kowalczyk and Sandberg [1] reported on seven cases of childhood acute lymphocytic leukemia (ALL) with partial deletion of the short arm of chromosome 9 (9p-) in the p21–22 region or complete loss of this chromosome. These patients were characterized by older age at diagnosis, lymphomatous features (i.e., prominent lymphadenopathy, mediastinal enlargement, splenomegaly), high white blood cell (WBC) count, T-cell origin in most cases, and accounted for 10% of cases of childhood ALL [1]. The association between lymphomatous ALL, T-cell phenotype, and 9p- was later on confirmed by Chilcote et al. [2], but a recent report by Carroll et al. [3], in contrast, found no correlation between 9p- deletion and either bulky disease or T-cell phenotype in childhood ALL. We have performed cytogenetic studies in 128 cases of ALL and found four patients with balanced or unbalanced

Address requests for reprints to: Dr. J. L. Laï, Service de Génétique, Faculté de Médecine, 1 Place de Verdun, 59045, Lille Cedex, France.

From the Service de Génétique, Faculté de Médecine (J. L. L., J. B. S., M. D.), the Service des Maladies du Sang, Hopital Huriez (P. F., J. P. P.), the Laboratoire d'Hématologie Hôpital Calmette (M. H. E.), the Centre Régional de Transfusion Sanguine, Rue Camille Guérin (J. J. H.), Lille, France.

Received September 29, 1987; accepted February 17, 1988.

				mond more and the second			
Patient	Age/Sex	Lymph nodes ^a	Spleen size ^b	Mediastinal mass	Other organomegaly	Remission/ survival (mo)	Current status
1	11/M	З	ε	1	Hepatomegaly	9/0	Alive but progression of the disease
2	36/M	0	0	+	Hepatomegaly enlarged kidneys	4/4 +	NED
з	36/M	2	0	I	1	30/30 +	NED
4	26/F	2	2	1	1	49/49 +	NED
Abbreviatic	Abbreviation: NED, no evidence of disease.	e of disease.					

 Table 1
 Clinical characteristics and response to therapy in the four patients

^{α}Lymph node: 0 = not palpable; 1 = palpable but < 1 cm; 2 = 1 to 3 cm; 3 = > 3 cm for a single node or > 5 cm for matted nodes. ^bSpleen size: 0 = not palpable; 1 = palpable but < 3 cm; 2 = > 3 cm but not below the umbilicum; <math>3 = below the umbilicum.

chromosome abnormalities involving the short arm of #9: single 9p- deletion in two cases, t(5;9)(p14;q21) in the third case, and t(9;14)(p21;q12) associated with $14q-(q22\rightarrow q24)$ in the remaining patient. Clinical and immunologic features of these patients were analyzed and compared with those of the literature.

CASE REPORTS

Clinical Features

.

Clinical features in the four patients are summarized in Table 1. There were three males and one female and their age ranged from 11 to 36 years. All patients had bulky disease with prominent lymphadenopathy (three cases) and splenomegaly (two cases), but a mediastinal mass was present in one case only. No patient presented with central nervous system or testicular disease. Complete remission (CR) was obtained in three cases (patients 2, 3, and 4), all of whom remain in first CR at 4+, 30+, and 49+ months, respectively. Patient 2 was autografted and patient 4 allografted.

Hematologic Findings

Hematologic and immunologic features are summarized in Table 2. Two patients had no or only slight anemia (hemoglobin > 10 g/dl). All four cases had leucocyte count above 50×10^{9} /L(range 52–600) and thrombocytopenia. Cytologically, cases 1 and 2 were L–1 in the FAB classification, case 3 was L–2, and case 4 remained unclassified ALL. Cell surface marker analysis revealed Ia and CALLA antigen positivity in cases 1 and 3. All patients were T (CD 2) and B (CD 19) negative.

CYTOGENETIC STUDIES

Cytogenetic studies were performed after 24-hour culture without stimulation by mitogens from bone marrow (BM) (patients 1–3) and peripheral blood (PB) (patients 3 and 4). Staining methods used were RHG- and GTG-banding by heating [4] and trypsin technique [5]. Chromosomal abnormalities were described according to the ISCN [6]. Cytogenetic results of the four patients are recorded in Table 3. Chromosome analysis of RHG- and GTG-banded BM metaphases from patient 1 revealed a t(9;14)(p21;q12) balanced translocation in 100% of metaphase cells and in, respectively, 9–38% during relapse; a deletion near the 14q22-q24 region (Fig. 1a, b) was also observed in that patient. Patient 2 had a modal number of 45 and the karyotype revealed a t(5;9)(p14;q21) unbalanced translocation associated with a 14q deletion as in patient 1. The t(5;9)(p14;q21) was associated with the loss of the 9q21 \rightarrow pter segment including the centromere of #9 (Fig. 2). For patient 3, cytogenetic analysis revealed two 9p deletions, in 9p13 and 9p21 bands, respectively (Fig. 3a). Finally, in patient 4 a del(9)(p21) was seen, in association with a der(19)t(1;19)(q21;p13) (Fig. 3b).

DISCUSSION

2

Since 1981, we have studied cytogenetically 128 newly diagnosed or relapsed ALL patients (excluding B-ALL cases). In 70 patients (55%), a clonal chromosome anomaly was discovered. Three of these patients had a partial loss of the short arm of chromosome 9 (9p-), and one case had a 9p translocation. The loss of the short arm of chromosome 9 was due to an unbalanced translocation in one case and to a

Table 2	Table 2 Hematologic and immunologic findings in the	immunologic	findings in the	e four patier	four patients with 9p abnormalities	ormalities				
Patients	Hemoglobin (g/dl)	Platelets $(\times 10^{9} \Lambda)$	WBC (×10 ⁹ L)	Blasts (%)	Blasts in marrow (%)	FAB classification	CALLA	.a-like	L	р В
4 3 5 1	8.5 13.1 6 11	97 60 24 74	600 52 64.7 150	98 67 97	99 84 	L-1 L-1 L-2 Not classified	+ 1 + 1	+ 1 + 1		1.1.1.1
Table 3	Cytogenetics of the four patients	ie four patient	.s							1
Patient	Material/ leukemic state	state	Metaphase cells (n)	Abno	Abnormal cells (%)		Karyotype ir	Karyotype in leukemic cells	ls	
1	BM Dg BM 1st relapse BM 2nd relance	anse anse	18 58 18		100 9	46,XY,-9	46,XY,-9,+der(9)t(9;14)(p21;q12),del(14)(q22q24))(p21;q12),del	(14)(q22q2 [,]	(F
3 2	BM Dg BM Dg BM Dg	pede	10 11 10		38 100 100	45,XY,-1 46,XY,de	45, XY, -5, -9, + der(5)t(5;9)(p14;q21), del(14)(q22q24) 46, XY, del(9)(p13), del(9)(p21)	5;9)(p14;q21),c p21)	lel(14)(q22	q24)
4	PB Dg		13 26		100 45	46,XY,de 46,XX,-1	46,XY,del(9)(p13),del(9)(p21) 46,XX, - 19,del(9)(p21), + der(19)t(1;19)(q21;p13)	p21) - der(19)t(1;19)	(q21;p13)	

Abbreviation: Dg, at diagnosis.

,

.

Ŧ

	K-X 2	X-8 3	8-8	X-X 5
<u>8 8</u>	<u>8</u> 8	88	<u>6 0</u> -	
6	7	8	9	
88	<u> </u>	X		8-
10	11	12		X
0_0	A A -	â D		
1.3	14	15		
<u>8-</u> 2	XX	តត		
16	17	18		
**	XX			
19	20			
a- 2	ñ ii			- 😹
21	22 Figure 1 (a) Comp.	lete karyotype of pati	ent 1 (RHG bands).	Y

Figure 1 (a) Complete karyotype of patient 1 (RHG bands).

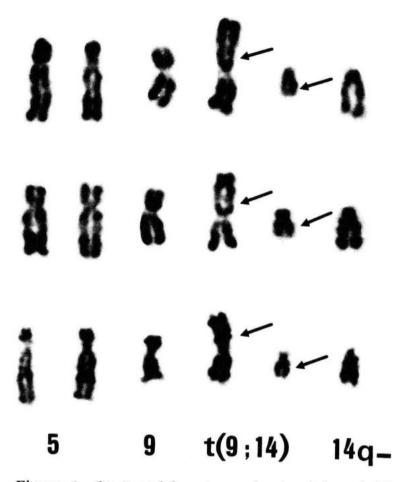
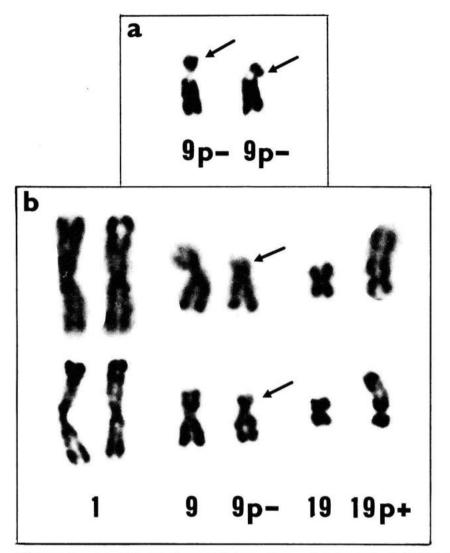



Figure 1 (b) Partial karyotypes showing balanced t(9;14)(p21;q12) and del(14)(q22q24) (RHG and GTG bands).


•

1

٩

Figure 2 Partial karyotype of patient 2 showing der(5)t(5;9)(p14;q21) associated with 14q deletion (RHG and GTG bands).

Figure 3 (a) R-banded partial karyotype of patient 3: del(9)(p21) and del(9)(p13). (b) R-banded partial karyotype of patient 4: del(9)(p21) and der(19)t(1;19)(q21;p13).

balanced translocation in the other patient. These structural abnormalities have been described by different authors: single 9p deletion [1, 2, 7-9], loss of the whole chromosome [1–3], deletion by unbalanced translocation [2, 3, 8, 11], as in patient 2, and by balanced translocation [3, 8], as in patient 1. A 9p-has also been found in pre B-ALL [10] associated with t(1;19). Kowalczyk and Sandberg [1] first reported the association between 9p – or monosomy 9, lymphomatous ALL (i.e., splenomegaly, marked lymphadenopathy with or without mediastinal mass), high leukocyte count and T-cell or non-T non-B origin in children and adolescents (mean age 10.7 years). Chilcote et al. [2] confirmed their results. To our knowledge, 31 cases of ALL with chromosome anomalies involving 9p (including our four patients) have now been reported (Table 4). Although the three largest series [1–3] comprised children or adolescents only, several adult cases have also been reported [8, 9], and in our series, adults predominated. A slight male predominance was encountered in all reports. Lymphomatous features were found in 19 of 31 and leukocyte counts above 50×10^{9} /L were seen in 17 of 31 patients. Immunologically, out of 24 patients adequately studied, seven were T, 13 common and 4 null ALL (although in the latter cases, early T or pre-B ALL could not be ruled out because of the small number of markers analyzed).

Acute lymphocytic leukemia with 9p anomalies therefore appears to be more heterogeneous than first reported [1, 2, 12]. Discrepancy in patient age might be explained by different referral among institutions. Our 128 L-1 or L-2 ALL patients

ant Age/sex disease $(\times 10^{9}/L)$ FAB M M M M M M M M M M M M M	atient		Bulk	WBC	Morphology.	Immu	nologic	Immunologic results	50		
$\begin{bmatrix} F \\ M \\$	Ŧ	Age/sex	disease	$(\times 10^{9}/L)$	FAB	CALLA	Ia	В	T	Karyotype abnormalities	Reference
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	L F	г .,	Г	a	I	1	1	+	+(0m91a1)14a1 + 04	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	M	B		D				-	u = p, z 1 + j, 1 + q + , + z 1	[1]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	IMI	Bul		1	I	I	I	+	t(1;1)(q41;q25), + 4del(6)(q21), -7, +9,	[1]
$\begin{bmatrix} M \\ M \\ F \\ M \\ F \\ M \\ M \\ M \\ M \\ M \\$	¢		k c							del(9)(p13), -12, +16, +17, +21, +21, +m	
$\begin{bmatrix} M \\ M \\ F \\ M \\ F \\ 16/M \\ 16/M \\ 4/M \\ 4/F \\ + \\ 207 \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 207 \\ - \\ 200 \\ $	o •	W	lis		3	I	1	E	+	del(5)(q15q31),del(9)(p21)	[1]
$\begin{bmatrix} M \\ F \\ F \\ 16/M \\ 10/M \\ 4/M \\ 4/F \\ + \\ 24 \\ 207 \\ 207 \\ 5 \\ 207 \\ 5 \\ 207 \\ 150 \\ 1150 \\ 150 \\ 13.9 \\ 203 \\$	4, 1	N :	eas	>60,000	D	I	I	I	+	del(6)(q21),del(9)(p11)	E
$ \begin{bmatrix} F \\ F \\ 16/M \\ 10/M \\ + \\ 207 \\ 10/M \\ + \\ 207 \\ 207 \\ 10/F \\ + \\ 150 \\ 1.5 \\ 1$	ç	M	se		a	I	I	1	1	del(9)(p21)	ΞΞ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	Ч	6/7	<u>-</u>	a	1	1	I	+	- 6	ΞΞ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	ы	_		Ð	I	1	1	I	- 9 i(17a)	ΞΞ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	16/M	+	ء ٦	L-1			1	ł	$-0 - 0 \pm 3min$	[7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	10/M	+	207	۲ ۲				3	0, 0, 14000	[7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	MINT	-	707	1-1			1	+	-8, -9, + der(9)t(8;9)(q12;p13), del(6)	[2]
$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	10	10/12			t					(q12?q21?)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10/F	ł	24	3			NT	LΝ	del(7)(p15),del(9)(p2100 p2200)	[2]
$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	11	4/M	+	37	L-1			I	+	del(9)(n22).del(20)(n12)	[6]
4/F – 15/F – 55/M	12	1/F	+	150	L-1			I		$-20, +21, del(9)(p_{2100}, p_{2200})/$	[2]
4/F – 15/F – 55/M										+21.del(9)	[1]
15/F +	13	4/F	1	27	a	+	+	I	1	del(9)(n13)	[2]
RE/M	14	15/F	+	13.9	а			1	I	HQ0-18/En24-612)	[9]
	15	55/M	I	130.4	a	+	+	I	I	(0)(20)(20) del(0)(20)	[0]
+	16	41/M	+	283.5	a	+	+	+	I	-0 + dom(0)((1.0)(0.09)(211.212.201.211)	0
1	17	41/F	1	12.4	a	· +	- +	- +		ə, Tusi(ə)((4;3)(9;22)(411;p13;q34;q11) dollon(~~4)	[8]

Tabla

[6]	[9]	[3] [3]	[3]	Present Case 2 Case 5	case 3 case 4 case 4
		4,		case 1 case 2	cas cas
del(9)(p21) del(6)(q21q23?),del(9)(p22),del(11)(q13), del(6),del(7),del(9),del(11)/ – 6,del(9), del(11). + i(6n)	$\frac{del(9)(p21),t(12;17)(p13;q12)}{-9,-13,18,+X,+2,+4,+5,+5,+6,+8,+8,+10,+10,+20,+21,+21,+22,+der(9)}$	$\begin{array}{l} (3,13)(p_{2,1},q_{1,3})\\ -9,-12,+\max\\ t(2;12)(p_{13};p_{12}),t(9;10)(p_{2}2;q_{2}1)\\ -9,-12,+der(9;12)(p_{11};q_{1}1)\\ -15,+X,+2,+4,+5,+8,+10,+11,+12,+14,\\ +18,+19,+20,+21,+21,+del(6) \end{array}$	(q21),der(9)t(9;?)(p13;?) - 1,der(6),dic(6;?)(p25;?), - 9,del(7)(q22), der(9)t(9;?)(p13;?)	-9,der(9)t(9;14)(p21;q12),del(14) (q22q24) -5,-9,+der(5)(5;9)(p14;q21),del(14)	(q22q24) del(9)(p13),del(9)(p21) – 19,del(9)(p21),der(19)t(1;19)(q21;p13)
1.1	1 1	1 1 1 1	1 1	1 1	1.1
L -	1 1	TELI	1	1 1	1.1
				+ 1	+ 1
	+	+ + + +	+ +	+ + 1	+ 1
L-1-L-2 L-2	L-1 ª	5 5 5 5	a a	L-1 L-1	L-2 L-1–L-2
3 232	7.8	<50,000		- 600 52	64.7 150
1 +	1 1	1 1 1 1	1 4	+ + +	+ +
12/F 15/M	36/F 14/F	7/M 8/M 16/M 7/M	4/M	11/M 37/M	30 36/M + 31 25/F +
18 19	20 21	22 23 25	26	28 29 29	30 31

.

1

.

.

Abbreviation: NT, not tested.

^anot evaluated

institutions seem to deal essentially with pediatric patients [2, 3]. Heterogeneity of clinical presentation and immunologic features might be related to the variability of karvotypes among reported cases. Out of 31 patients (Table 4), 9p- anomalies were isolated in only six cases, and associated with other clonal anomalies in the remaining patients including five del(6), four del(7), one del(11), two del(14), one del(5), and one del(20). Additionally, we found a 9p deletion in two of our ALL patients with a Ph chromosome [13], and this association has been reported in another case (patient 16, Table 4). The question of whether del(9p) represents a primary or secondary chromosome defect can therefore be raised. It must be noted, however, that the 9p21-22 region is also involved in other leukemias, particularly in t(9;11)(p21;q23) translocations (monocytic leukemias) [12, 14], and that a heritable fragile site exists in that region [15]. Finally, the gene encoding the enzyme methylthioadenosine phosphorylase (MTAP), which is involved in purine metabolism in proliferating lymphocytes, has been located on the short arm of #9 [16]. This enzyme was absent in blasts of ALL patients with 9p- deletion [17]. Although MTAP deficiency has also been encountered in cases of ALL without 9p anomalies [18], it may render the malignant clone sensitive to agents that inhibit de novo purine synthesis [17].

The 9p- abnormalities appear relatively frequently in childhood and adult ALL. Although ALL with 9p- defects may not represent a homogeneous subgroup of ALL, they are still associated, in the majority of patients with poor prognostic features, such as older age for children, bulk disease, and T-cell or null origin.

REFERENCES

- Kowalczyk J, Sandberg AA (1983): A possible subgroup of ALL with 9p-. Cancer Genet Cytogenet 9:383-385.
- Chilcote RR, Brown E, Rowley JD (1985): Lymphoblastic leukemia with lymphomatous features associated with abnormalities of the short arm of chromosome 9. N Engl J Med 313:286-291.
- 3. Caroll AJ, Castleberry RP, Crist WM (1987): Lack of association between abnormalities of the chromosome 9 short arm and either "lymphomatous" features of T cell phenotype in childhood acute lymphocytic leukemia. Blood 69:735-738.
- 4. Dutrillaux B, Lejeune J (1971): Sur une nouvelle technique d'analyse du caryotype humain. CR Acad Sci (Paris) 272:2638-2640.
- 5. Seabright M (1971): A rapid banding technique for human chromosomes. Lancet 2:971-972.
- ISCN (1978): An International System for Human Cytogenetic Nomenclature (1978). Birth Defects: Original Article Series, Vol. XIV, No. 8 (The National Foundation, New York, 1978); also in Cytogenet Cell Genet 21:309-404 (1978).
- Bigner SH, Friedman HS, Kinney TR, Kurtzberg J, Chaffee S, Becton D, Faletta JM (1986): 9p- in a girl with acute lymphocytic leukemia and sickle cell disease. Cancer Genet Cytogenet 21:267-269.
- 8. Maseki N, Hayashi Y, Kaneko Y, Sakurai M (1986): Partial loss of the short arm of chromosome 9 in leukemia and lymphoma. Cancer Genet Cytogenet 22:89–91.
- Kaneko Y, Rowley JD, Variakojis D, Chilcote RR, Check I, Sakurai M (1982): Correlation of karyotype with clinical features in acute lymphoblastic leukemia. Cancer Res 42:2918– 2929.
- 10. Williams DL, Look AT, Melvin SL, Roberson PK, Dahl G, Flake T, Stass S (1984): New chromosomal translocations correlate with specific immunophenotype of childhood acute lymphoblastic leukemia. Cell 36:101–109.
- 11. Ohyashiki K, Kocova M, Ohyashiki JH, Ryan DH, Rowe JM, Sandberg AA (1986): Translocation between chromosomes 1 and 9 in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet 21:5–10.

- 12. Pollak C, Hagemeijer A (1987): Abnormalities of the short arm of chromosome 9 with partial loss of material in hematological disorders. Leukemia 1:541-548.
- 13. Jouet JP, Fenaux P, Simon M, Pollet JP, Walter MP, Zandecki M, Laï JL, Bauters F (1985): Leucémies aiguës lymphoblastiques (LAL) avec chromosome Philadelphie. A propos de 9 observations. Nouv Rev Fr Hémat 27:76.
- 14. Hagemeijer A, Hählen K, Zigoo W, Abels J (1982): Translocation (9;11)(p21;q23) in three cases of acute monoblastic leukemia. Cancer Genet Cytogenet 5:95–105.
- 15. Hecht F, Hecht BK (1986): Chromosome 9 in acute lymphoblastic leukemia: breaks in band 9 p21-22 and fragile site. Cancer Genet Cytogenet 21:1-3.
- Carrera CJ, Eddy RI, Shows TB, Carson D (1984): Assignment of the gene for methylthioadenosine phosphorylase to human chromosome 9 by mouse-human somatic cell hybridization. Proc Natl Acad Sci USA 81:2665–2668.
- 17. Chilcote RR, Carrera CJ, Le Beau MM, Morgan R, Matthay K, Willis E, Hecht F, Carson DA, Rowley JD (1986): Chromosome 9 abnormalities and methylthioadenosine phosphorylase activity in lymphoblastic leukemia. Blood 68:(suppl)253a.
- Scarletti B, Graham BH, Young GJ, Mackinnon W, Garson OM, Castelino D, Van Der Weyden MD (1986): MTAP deficiency and chromosome 9 in acute leukemia. Blood 68:(suppl)265a.